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A semi-implicit method for solving the full compressible magnetohydrodynamic equations 
in three dimensions is presented. The method is unconditionally stable with respect to the fast 
compressional modes. The time step is limited instead by the slower shear Alfven motion. The 
computing time required for one time step is essentially the same as for explicit methods. 
Linear stability limits are derived and verified by three-dimensional tests on linear waves in 
slab geometry. 0 1985 Academic Press. Inc. 

I. INTRODUCTION 

The major application of three-dimensional magnetohydrodynamic (MHD) 
simulation is the study of toroidal or linear plasma confinement devices, e.g., 
tokamaks, stellarators, reversed-field pinches, and tandem mirrors. MHD codes are 
extensively used for analyzing three-dimensional equilibrium configurations for 
stellarators and for studying the plasma evolution leading to disruptions in 
tokamaks. Due to the high cost of these devices and due to the structural damage 
caused by hard disruptions, numerical simulation plays an important role in both 
analysis and design studies. MHD simulation methods have been extensively 
reviewed by Brackbill [ 1 ] and by Schnack and Killeen [2]. 

The aforementioned devices are all characterized by a long scale length in the 
toroidal direction (axial for mirrors) and a much shorter scale length in the perpen- 
dicular direction. These different scale lengths lead to a separation of time scales 
with fast compressional waves occurring on a very rapid time scale and shear 
Alfven, sound, and resistive modes evolving on much slower time scales. Conven- 
tional explicit numerical schemes are forced to use very small time steps due to a 
Courant-Friedrichs-Lewy (CFL) condition imposed by the fast compressional 
modes. 

One method to avoid the fast time scale restriction is to make analytic sim- 
plifications in the MHD equations by applying an expansion in the inverse aspect 
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ratio [3,4]. These equations have been implemented numerically by a number of 
authors in the study of tokamak disruptions [S-S]. Such “reduced” equations 
eliminate the fast time scale; however, in order to properly include effects of finite 
pressure and toroidal geometry they often require retaining terms as high as third 
or fourth order in the expansion parameter [9, lo]. Some experiments have a 
relatively small aspect ratio, such as JET [ 1 l] with R/a = 2.4, so that inverse aspect 
ratio expansion does not provide a good representation. 

Another approach to eliminate the fast time scale is given by the assumption of 
incompressibility [ 1, 121. While this eliminates the fast compressional modes it also 
has the undesirable effect of eliminating sound waves. This assumption leads to 
incorrect growth rates of unstable modes [ 131 and for resistive instabilities it can 
change the stability threshold. The analysis for resistive ballooning modes reveals 
that compressibility stabilizes the slow resistive ballooning modes [14, 151. 

In principle it is possible to eliminate the CFL restriction by using an implicit 
time advance. Advancing the resistive term implicitly does not pose great dif- 
ficulties, but advancing the full equations implicitly in three dimensions would 
require the solution of very large matrix systems at every time step. 

One technique to make implicit methods less cumbersome is the alternating 
direction implicit (ADI) method. Such a scheme has been applied to the three- 
dimensional MHD equations by Finan and Killeen [ 161. However, this method 
still requires the solution of large block matrix equations in the time advance. 

We conclude that it is necessary to solve the MHD equations for finite com- 
pressibility and aspect ratio without analytic approximation. The numerical scheme 
should be tailored to allow reasonable time steps on the shear Alfvtn time scale and 
should have the virtue of being simple to implement. For this purpose we propose 
here a semi-implicit method, which is aimed toward the eventual simulation of dis- 
ruptions in toroidal confinement systems. Semi-implicit methods have been used 
previously in conventional fluid dynamics [17, 181; however, their application to 
three-dimensional MHD is new. Our method is unconditionally stable with respect 
to the fast compressional modes; therefore our time step restrictions are no more 
severe than in the incompressible case or for the reduced equations. The method 
also has the virtue of not requiring the solution of any large block matrix systems in 
either Cartesian or cylindrical coordinates. Only one simple tridiagonal matrix 
equation must be solved. The method is presented here together with a linear 
stability analysis. Using a three-dimensional code in slab geometry, unconditional 
stability with respect to the fast modes is demonstrated. Resistivity is not included 
in these simulations because the treatment of resistivity is independent of the 
method for eliminating the fast compressional time step restriction. In Section II of 
this paper the model is defined and the semi-implicit method for the three-dimen- 
sional MHD equations is described. In Section III we discuss the linear stability 
properties of the method. In Section IV the results of numerical tests are presented. 
Finally in Section V we present conclusions and discuss the application of the 
method to resistive instabilities in adapted toroidal coordinates. 
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II. MODEL 

The compressible MHD equations in single fluid theory have the form 

Momentum 
av 
at= -(P.V) ii+f [(VxB)xB-VP] (1) 

- 

Maxwell-Ohm $Vx(VxB)-Vx(sVrB) (2) 

(3) 

energy 
ap 
at=- 

V. VP - yPV . P + dissipative terms (4) 

where p denotes the mass density, P the plasma pressure, B the magnetic field, P 
the flow velocity, and q the resistivity of the plasma. We are interested in problems 
in which wave propagation occurs most rapidly across one plane. For simplicity, 
Cartesian coordinates are considered here where scale lengths in the z-direction are 
much longer than in the x- and y-directions. The fastest time scale will be due to the 
fast compressional waves in the x-y plane. We do not make any assumptions about 
aspect ratio or compressibility. In what follows we present a semi-implicit algorithm 
which has the advantage of having no fast time scale restriction on the time step, 
but solves the full MHD equations without any additional approximations. 

Semi-implicit methods are obtained by first identifying a mode which may 
produce numerical instability. Then a simple approximation to the terms producing 
this mode is formulated and subtracted from each side of the differential equation. 
Such a method is completed by evaluating the new approximate term on the right 
side of the equation explicitly at the old time step and the new term on the left side 
implicitly at the new time step. 

To illustrate the semi-implicit method consider a one-dimensional linear problem 
with a/az = a/ay = 0, B= B,i, and V= vY;a. Assume that the plasma is cold and 
that the density is constant (p = 1, P = 0). Finally, neglect resistivity and linearize 
Eqs. (1) and (2) with V, = V,(x) and B,= B,+ B,(x). This gives a simple set of 
equations which contains only fast compressional waves: 

?!$ -Bo?$ (5) 

(6) 

This set can be written easily as the second order wave equation: 

a*h=B2a*c 
at* O ax* (7) 
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We now consider the discretiiation of Eq. (7) in time, 

(8) 

where (aI’,/&)” can be determined from Eq. (5). This is an explicit time advance 
and consequently leads to methods which have CFL time step restrictions on the 
fast modes. To make this method unconditionally stable we would like to move the 
term B~(A~)‘(~‘V’,/~X’)~ to time step n + 1, so that the method becomes implicit. In 
a general nonlinear problem the new field B “+ ’ is not known, so instead we sub- 
tract a similar term from each side giving a semi-implicit version of Eq. (8) 

a*v, n+’ If:+‘-Ai -p ( ) = v:+ni($q+BQ(At)‘(f$) 

azv, n 
- 4xw2 --j--g ( ) 

where A, is a constant. The subtraction of these new terms in Eq. (9) can have the 
same effect as making the fast modes implicit, even though A, may be very different 
from B,. In fact, the method will be unconditionally stable, as for an implicit 
method, when Ai2 B$. In Section III a more precise stability criterion for the 
specific algorithm used in three dimensions will be given. The new terms make the 
treatment of the fast compressional modes only first order accurate in time, regar- 
dless of the order of accuracy of the method prior to their inclusion. This method 
has similarities to semi-implicit methods used in fluid dynamics [17, 181. 

We follow the same procedure in three dimensions as in the one-dimensional 
case. First the fast compressional modes in the x - y plane are found. For this pur- 
pose we linearize Eqs. (l-4) differentiate Eq. (1) with respect to time, substitute, 
and finally, retaining only compressional modes (k I B), have 

The perpendicular components of modes like those in Eq. (10) have the fastest time 
scale. In three dimensions our method uses a simple predictor-corrector algorithm. 
In order to treat the fast modes in the x-y plane semi-implicitly, we modify the per- 
pendicular velocity equation by subtracting a term with the same form as the right 
hand side of Eq. (10). The constant coefficient, Ai, in front of the semi-implicit term 
will be determined from stability considerations. The algorithm is as follows: 

- 

P*= P+ed$(p, V, B,P)” 

(12) 
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p*=pn-eAtV.(pP)” (13) 

P*=P”-8At(~.VP”+yP”V.P) (14) 

- - 
v;+1= v;+$F,(p; v, B, P)* (15) 

PL+l - (At)2 A;V(V. PI)“+’ = 
- - 

p, ++(,, ?‘, B, P)* - (At)2 A;V(V. P,)” (16) 

B -“+LB”++ [(P”‘l+ p)xB*] (17) 

P n+Lpn+7. Cp*(p+'+ p)] 

P .+‘,p+[(p+‘+ ~).vp*+yp*v.(~+l+~)] (19) 

F, the force, is the right hand side of Eq. (1). 0 is a parameter which may be chosen 
to be from 0.5 to 1.0. P, refers to the velocity in the x-y plane. A, is again a con- 
stant which must be sufliciently large for the method to be unconditionally stable 
with respect to the fast modes. The magnetic field is always advanced after the 
velocity advance, so that it requires no special treatment. The advanced velocities 
may then be used in a Crank-Nicolson-type advance, as in Eq. (17). The pressure 
and density are also handled in this manner. If 0 is chosen to be 0.5 the method is 
second order accurate in time, with the exception of the fast compressional modes 
which remain first order accurate due to the semi-implicit terms. However, in prac- 
tice we normally choose 9 > 0.5 for reasons to be discussed in Sections III and IV. 

Because the method is intended to eventually be used in cylindrical and adapted 
toroidal coordinates, we assume periodicity in y and z. In x we have conducting 
walls at x = 0 and x = 1. We represent quantities as a double Fourier series in y and 
z, i.e., 

f= c3m,(x) ei(Ty+gz). 
m,n 

In x we use standard, centered, second order finite differences. This spatial represen- 
tation leads to a large simplification in the time advance. Advancing Eqs. (ll)-( 19) 
is straightforward, except for Eq. (16). The semi-implicit term in Eq. (16) couples 
the V, and V, equations: 
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However, because the semi-implicit term in Eq. (21) contains no x-derivatives of 
V,,, after Fourier transforming, Eq. (21) can be written as 

p+1= p+ 
Y y Cl+(At)2:;(2~m,u)2, [~,+(~)4x~~)2-&(,+~- m]. 

(22) 
The expression is then substituted back into Eq. (20) with the result 

p:.+1- (At)2 A; a2q+ ’ 
1 + (At)2 ‘4~(2rU?/a)2 ax2 

= p + W~44W3 4 a (AtI A, a2P. 
x 1 + (At)2 A;(2~cnz/a)~ i%i I + (At)2 A;(2~cnm/a)~ dl” 

(23) 

This equation can be solved easily, since after finite differencing the left hand side is 
a simple tridiagonal matrix. Then the result for pX+’ is substituted back into 
Eq. (22) to get p; + ’ . Therefore, the full set, Eqs. (ll)-( 19), is advanced in time 
without requiring the solution of any large block matrix systems. We note that this 
also holds for cylindrical coordinates. Hence, a single time step requires essentially 
the same amount of computing time as an ordinary explicit advance, yet with the 
advantage that much larger time steps are allowed. In general this simple solution 
would not be possible for an implicit advance because the coefficient on the implicit 
part of Eqs. (20) and (21) would be spatially dependent. This would lead to con- 
volutions which would couple the individual mode equations. However, the semi- 
implicit method avoids this problem since the left hand sides of Eqs. (20) and (21) 
always have constant coefficients. The same difficulty occurs when one tries to 
include spatially dependent resistivity implicitly. However, a similar semi-implicit 
treatment of resistivity may be used to eliminate the problem of convolutions there 
as well. 

III. STABILITY 

We will now demonstrate the linear stability properties of the method by analyz- 
ing a two-dimensional case with 8/+ = 0 and B, = B,,z*. With pressure set to zero 
and unit density, after linearization, Eqs. (1 1 )-( 19) become 

B:, = B:, + BB, At; V; 

B;, = B;, - OB, At i V; 

(32vn+ I 
V;+‘-(At)‘A;-&= V;+AtB,, (~-%-(&)2,$$ (26) 
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B;: ’ = B;, + B,, 4 2 * aZ (vi+‘+ Ki) (27) 

B:,+ L = B” ;I -Bzo$j++’ + vg. (28) 

Now substitute Eqs. (24) and (25) into Eq. (26). For simplicity, here we will assume 
periodicity in the x-direction as well as in the z-direction. After Fourier transform- 
ing in x and z we have 

(1 +@P) ?+I = [I+ (A; - OB$,) K2 - 0N2B$] px + iNB,& - iKB,&, (29) 

B::‘=B~,+~1’NB,,(~~+‘+ px) (30) 
gn+1=B” ;I 21 - +iKB,( pr+ ’ + p!J. (31) 

In Eqs. (29)-( 3 1 ), N is defined as N = (27cn/L) At, where n is the mode number in 
the z-direction. We also define K as K= 2(At/Ax) sin(k., AX/~). It is now suitable to 
write Eqs. (29-3 1) in the form 0” ’ ’ = Ai?‘, where A is the amplification matrix and 
UT= (P,, B,r, fi,r). After some algebra, A is found to be 

Y- 8(K2 + N2) B;,, iNB, -iKB,, 

iNB, 
[ 

Y-;(K2+N2)B& 1 Y-i N2BS, ; NKB& 

- iKB,, Y-;(K2+N2)B:, 
1 

; NKB;,, Y-i K’BZ, I (32) 

where Y = 1 + AgK2. If all eigenvalues of the matrix A are on or inside the unit cir- 
cle, then no exponentially growing solutions exist and this is sufficient for numerical 
stability. We define the quantity tl as a = (K2 + N2) Bz. The eigenvalues of matrix A 
are now computed from Eq. (32) which after some algebra are eventually expressed 
as 

co=+ Y-$1+2e)af 
{ [ 

-aY+k (1+28)2c? 
112 

1 I , (33) 

in addition to the trivial eigenvalue, w = 1. If 6 -C 0.5, the method is unconditionally 
unstable. For 0.5 < 8 < 1.0 we have stability as long as the discriminant in Eq. (33) 
is not positive, i.e., whenever 

-4(1+A;K2)++(l+28)2(K2+N2)B;<0. (34) 

In order to have unconditional stability with respect to the fast compressional 
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modes the method must remain stable as K + co. From Eq. (34) it can be seen that 
this will be true only if the condition 

(35) 

is satisfied. Then the stability of the method will be ensured with Eq. (34) by satisfy- 
ing the additional condition 

N’B;, < 16/( 1 + 2Q2. (36) 

Notice first that if 8 = 0.5 and if Eq. (34) is satisfied then all roots lie on the unit cir- 
cle. Therefore, even though the scheme may be stable, any excitation of the fast 
modes will persist as undamped noise, even for very large time steps. Additionally, 
if there is finite flow in the equilibrium, 8 = 0.5 should not be used for prediction of 
the advective terms, since without additional care such a method is unconditionally 
unstable. Therefore in practice we choose 0 > 0.5. If 0.5 d 8 < 1.0, and if A, satisfies 
Eq. (35), where B;, represents the largest value of B$ then only the relatively 
unrestrictive condition on the shear Alfven modes, Eq. (36), must be satisfied for 
stability. When there is finite pressure, B$ is replaced by B$ + yP, in Eq. (35). 

For many problems the equilibrium field will have components in both the y and 
z directions (poloidal and toroidal directions in a torus). In the general case BS, in 
Eq. (35) should instead be the square of the amplitude of the total magnetic field at 
its maximum, rather than just the z-component. The analysis for the case with an 
equilibrium B.,, is similar to that for the case with B=,. From numerical tests for the 
general three-dimensional case, we find the method to be stable as long as the time 
step and A, remain within the following constraints throughout the plasma: 

A;>&Bj+ Bt+yP)(l +20)2 

and 

The first constraint, Eq. (37), is the requirement for unconditional stablity with 
respect to the fast modes and the second condition, Eq. (38) is a standard CFL-like 
condition imposed by the shear Alfven modes. Note that Eqs. (37) and (38) do not 
contain any terms involving the grid spacing in the x-direction, so that an 
arbitrarily line grid may be used in x without affecting the time step. Therefore the 
method satisfies our original goal of allowing reasonable time steps on the shear 
Alfvtn time scale, unrestricted by the fast compressional modes. 
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IV. NUMERICAL TESTS 

We have tested the linear stability properties of the method in a three-dimen- 
sional code using slab geometry. We assume the density to be constant, p = 1, and 
neglect the advective terms. While the inclusion of the advective terms is necessary 
for a general nonlinear code, they do not affect the linear stability of the method. 
We initialize a uniform equilibrium magnetic field and then perturb the velocity, 
exciting waves. These tests have produced results consistent with the stability limits 
discussed in Section III. 

Consider a case initialized with B, = 1.0, B, = 0.2, and P= 0. We apply the 
following three-dimensional perturbation, where 6 is the perturbation amplitude: 

V, = (0.96/2n) 6 sin( y + 0.22) sin( 2rcx) 

If?- = 1.06 cos( y + 0.22) cos( 27cx) 

vz = - 0.26 cos( y + 0.22) cos(27rx). 

This is an excitation of a shear Alfven wave with frequency o = k. B = 0.4. We use 
41 grid points in the x-direction. If we do not use the semi-implicit method, i.e., set 
A, = 0.0, then numerical instability results if the time step exceeds the usual CFL 
condition, At < (Ax/B,) = 0.025. In a realistic toroidal problem, including resistivity, 
much higher spatial resolution is required so that the CFL limit would be even 
more severe. 

To simulate the Alfvtn wave we first choose a time step of At = 0.10, which is 
four times the normal CFL limit. The numerical parameter, 8, of the predic- 
tor-corrector method is set to 0 = 0.52. We use A,= 0.7 for the semi-implicit 
parameter, which satisfies the stability condition, Eq. (37). The kinetic energy of the 
wave is shown in Fig. 1. The expected wave period of ‘5 = 571 is reproduced correctly. 
In Fig. 2 we show the result of a simulation with At = 0.4. Some damping of the 
wave kinetic energy is apparent after many oscillations, due to the predictor-correc- 
tor method. We can further increase the time step as long as it remains below the 

0 10 20 30 LO 50 
TIME 

FIG. 1. Kinetic energy of a shear Alfvkn wave due to a three-dimensional perturbation, with o = 0.4 
and At = 0.1. The semi-implicit method properly simulates the wave even though the time step is four 
times the usual explicit CFL limit. 
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FIG. 2. Kinetic energy of the wave of Fig. 1, except with At = 0.4. 

0 
0 200 LOO 600 8OC 

TIME 

FIG. 3. Kinetic energy of the wave of Fig. 1 with At =2.0. The time step is now too large to 
accurately represent the shear Alfven wave. At such a large time step the wave is damped; however, the 
method is still stable. 

KE PERP (IO-~ 1 
3 

FIG. 4. Plasma kinetic energy perpendicular to the equilibrium magnetic field. A fast compressional 
wave, a shear Alfven wave, and a sound wave have been excited. f? =0.52 and Af = 0.01. The rapid 
oscillation here is due to a fast compressional wave with o = 7.695 and the slow decrease in kinetic 
energy is due to the beginning of a shear Alfven wave with w = 0.2. 
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FIG. 5. Perpendicular kinetic energy for the case of Fig. 4, but with At = 0.3. The rapid oscillations at 
the beginning are due to the fast mode and have been effectively damped after one shear Alfvtn period. 

KE PARAL ( 1O-9 1 
2 

! 

0 20 40 60 
TIM 

?! 100 120 140 

FIG. 6. Parallel kinetic energy for the case of Fig. 5. The oscillation is due to the sound wave with 
0=0.1414. 

:: 
TIM 

120 140 

FIG. 7. Variation of IV. p,I as a function of time for the case of Fig. 5. The fast compressional 
oscillations are clearly damped on the shear Alfven time scale. 
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FIG. 8. Perpendicular kinetic energy for the case of Fig. 5, except with 0 = 0.50. The noise super- 
posed on the shear Alfvirn wave is due to the undamped fast waves which are now inaccurately resolved 
by the large time step. 

stability limit of Eq. (36). For this case the limit on the time step is At < 4.9. In 
Fig. 3 we show the wave kinetic energy as a function of time when At = 2.0. The 
wave is heavily damped. Clearly, at this point the time step is so large that the 
shear Alfven wave is no longer accurately represented. However, the method con- 
tinues to be stable. 

As a second example we consider a case with an equilibrium field purely in the z- 
direction, B, = 1.0. We set the pressure initially to P = 0.3 and y = $ Then three 
modes are excited: a fast compressional wave with V, = 6, sin(2zx), a shear Alfven 
wave with VY=82 cos(O.2z), and a sound wave with V,=S, cos(O.2~). We set 
0 = 0.52 and A, = 0.8 and again use 41 radial grid points. At first we choose a very 
small time step, At = 0.01. Figure 5 shows the kinetic energy perpendicular to B as a 
function of time for this case. The fast compressional wave is apparent with the 
proper frequency, oi = 7.695 (r = 0.8165). The decrease in energy is due to the 
beginning of a shear Alfvtn oscillation. We next use an increased time step of 
At = 0.3. The perpendicular kinetic energy is again shown in Fig. 5. A rapid 
oscillation can be seen at the beginning due to excitation of the fast compressional 
mode. However, the fast mode is quickly damped, leaving only the shear Alfvtn 
wave with the proper frequency of o2 = 0.2. In Fig. 6 the parallel kinetic energy is 

0 20 LO 60 @ 
T I 

100 120 :rzr 

FIG. 9. Variation of IV. 8,1 for the case of Fig. 8. The compressional motion is now undamped 
because 0 has been reduced to 8 = 0.50 from f3 = 0.52 in Fig. 7. 
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shown and the oscillation here is due to the sound wave with the correct frequency, 
o3 = fi kZ = 0.1414. Figure 7 displays the time evolution of the perpendicular 
divergence of the velocity, IV. VII. It shows clearly that the oscillatory com- 
pressional motion damps rapidly with large time steps. Again we emphasize that no 
incompressibility constraints have been enforced. The predictor-corrector method, 
for 8 > 0.5, damps any oscillatory motion when the time step is so large that this 
motion is not accurately resolved. 

As discussed in Section III, if 8 is set to 8 = 0.50, then any excited waves will per- 
sist undamped. We have repeated the case shown in Figs. 5-7 with % = 0.50. The 
result is shown in Fig. 8. The additional noise superposed on the shear Alfvtn 
oscillation is due to the undamped excitation of the fast modes. However, these 
rapid oscillations are not properly resolved with such large time steps so their 
excitation appears as noise. Figure 9 shows IV. FL 1 for this case, indicating, in con- 
trast with Fig. 7, that no damping of the compressional motion occurs. Therefore 
we again recommend keeping 8 above 0.5. 

Our numerical tests in three dimensions have verified our previous stability 
calculations. We generally find the algorithm to be numerically stable as long as the 
conditions of Eqs. (37) and (38) are satisfied. This has also been found to be true 
for tests with nonuniform magnetic fields, pressure, and density. 

V. CONCLUSIONS 

We have developed a semi-implicit method for solving the full compressible 
MHD equations in three dimensions. The method is unconditionally stable with 
respect to the fast compressional modes. The time step is constrained only by the 
time scale of the shear AlfvCn modes. The method does not require the solution of 
any large block matrix systems; therefore, the computation time required for one 
time step is essentially the same as for an explicit time step. The method has been 
tested on linear waves in three dimensions and our stability limits have been 
verified. 

Time steps that are much larger than fast compressional oscillation periods are 
permitted. However, for problems in which the dynamics of the fast modes are 
thought to play an important role, the details of the fast compressional motion can 
be fully recovered by reducing the time step. 

The semi-implicit method will be applied in the future to the study of resistive 
instabilities in toroidal confinement devices. The addition of resistivity to our 
method is straightforward. Although many problems relating to tokamak disrup- 
tions or reversed-field pinch evolution can be studied with cylindrical or Cartesian 
coordinates, ultimately it would be desirable to use adapted toroidal coordinates. 
As is the case with the reduced equations [6], such nonorthogonal coordinates will 
require more difficult matrix solutions in the velocity computation than the simple 
tridiagonal solutions used in Cartesian or cylindrical coordinates. Therefore, in 
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nonorthogonal coordinates the semi-implicit method may require significantly more 
computation time per time step than a purely explicit scheme for the full MHD 
equations. However, such an increase per time step easily would be outweighed by 
the elimination of the fast CFL constraint on the time step size. Nevertheless, in 
terms of computation time the semi-implicit method offers the potential to make 
full MHD simulations competitive with previous methods for the reduced or incom- 
pressible equations. 
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